p50Rho GAP protein: Catalytic domain (human recombinant)
Cat. # GAS01

Upon arrival store at 4°C (desiccated)
See datasheet for storage after reconstitution

Material
The catalytic domain of human p50RhoGAP protein has been produced in a bacterial expression system. The protein consists of the RhoGAP domain of p50 RhoGAP (amino acids 198-439, approx. 29 kDa) and an amino terminal GST protein tag (approx. 28 kDa). The protein is supplied as a lyophilized powder. Each tube contains 50 µg of protein.

Storage and Reconstitution
The protein should be reconstituted to 1 mg/ml by the addition of 50 µl of distilled water. The protein will be in the following buffer: 2 mM Tris pH 7.5, 0.5 mM MgCl₂, 0.5% sucrose, 0.1% dextran. In order to maintain high biological activity of the protein, it is strongly recommended that the protein solution be supplemented with DTT to 1 mM final concentration, aliquoted into "experiment sized" aliquots and snap frozen in liquid nitrogen. The protein can be stored at -70°C for 6 months. The protein must not be exposed to repeated freeze-thaw cycles. The lyophilized protein is stable at 4°C or -70°C for 1 year when stored dessicated (<10% humidity).

Purity
Protein purity is determined by scanning densitometry of Coomassie blue stained protein on a 4-20% polyacrylamide gradient gel. The protein was determined to be >85% pure. (see Figure 1).

Biological Activity Assay
Biological activity of p50 RhoGAP catalytic domain protein is determined by the ability of the protein to catalyse GTP hydrolysis by RhoA and Rac1 proteins.

Reagents
1. Recombinant p50 RhoGAP (Cat.# GAS01)
2. Recombinant RhoA-His protein (Cat.# RH01)
3. Recombinant Rac1-His protein (Cat.# RC01)
4. GTP stock (100 mM) (Cat.# BST06-001)
5. 2X reaction buffer (80 mM PIPES pH 7.5, 20 mM EDTA, 20 mM NaCl)
6. CytoPhos reagent (Cat.# BK054)
All reagents are available in biochemical kit Cat # BK105

Equipment
1. Spectrophotometer set to 650 nm
2. Corning 96-well half area plates (Cat # 3686) or other plate with low protein binding surface.

Method
1. Resuspend all protein reagents in distilled water to give 1 mg/ml final concentration.
2. Add 15 µl 2X reaction buffer to each of 5 wells in a half area microtiter plate.
3. Add the following to each well; well # 1 = 5 µl Rac1 protein, well # 2 = 5 µl Rac1 protein plus 5 µl of GAS01, well # 3 = 5 µl RhoA protein, well # 4 = 5 µl RhoA protein plus 5 µl of GAS01, well # 5 = 5 µl GAS01.
4. Make up the volume of each reaction to 30 µl using distilled water.
5. Initiate all reactions by adding GTP to 200 µM final concentration and incubate at 37°C for 20 minutes.
6. Stop the reaction by adding 120 µl of CytoPhos reagent into each well.
7. Allow the green color to develop for 10 minutes.
8. Read reactions at 650 nm. An example of standard results are given in Figure 2, increased OD650 readings indicate enhanced GTP hydrolysis in those samples.

NOTE: The assay as described here is a qualitative analysis of GAP activity. Specific GAP activity in nmoles/min/mg of small G-protein can be determined by taking timepoints from a scaled up GAP reaction. Readings can be quantitated against a standard phosphate curve. The standard curve can be performed as follows:

a. Prepare a 0.1 mM KH2PO4 solution in distilled water and add 1,2,5 and 20 µl to individual wells of a half area plate.
b. Bring the volumes to 30 µl with distilled water and add 120 µl of CytoPhos reagent into each well.
c. Proceed with color development as described above.

Figure 2.
Rac1 & RhoA GAP Assay

Rac1 (wells 1 & 2) and RhoA (wells 3 & 4) proteins were incubated at 37°C in the absence (wells 1 & 3) or presence (wells 2 & 4) of p50RhoGAP catalytic domain protein. Each 30 µl reaction contains 5 µg of either Rac1 or RhoA protein and +/- 5 µg of p50RhoGAP catalytic domain protein. Well 5 contains p50RhoGAP catalytic domain protein only. All reactions were incubated at 37°C for 20 minutes followed by the addition of 120 µl of CytoPhos reagent. After a 10 minute incubation the reactions were read at 650nm. Increased OD650 indicates enhanced GTP hydrolysis.

Product Uses
- Study of GAP activity with different GTPases.
- Identification of GAP binding proteins
- Positive control for other RhoGAP studies.

References

Product Citations/Related Products
For the latest citations and related products please visit www.cytoskeleton.com.