The phosphatidylinositol (3,4,5)-trisphosphate phosphatase and tensin homolog (PTEN) is a tumor suppressor protein discovered 20 years ago by two independent laboratories. PTEN is also known to regulate diverse cellular functions such as adhesion, migration, proliferation, growth, and survival. PTEN is composed of five domains: an N-terminal phosphatidylinositol (4,5)-bisphosphate (PIP2)-binding domain, a catalytic tensin-type phosphatase domain, a C2 tensin-type domain that binds phospholipids, a C-terminal tail domain, and a PDZ-binding domain (Fig. 1). The role of PTEN as a tumor suppressor is attributed to its lipid phosphatase activity which inhibits the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway integral for cell survival and growth by converting phosphatidylinositol (3,4,5)-trisphosphate (PIP3) into PIP2.

PTEN expression and enzymatic activity are tightly regulated transcriptionally, post-transcriptionally, and post-translationally. Indeed, a wealth of data has shown that post-translational modifications (PTMs) of PTEN such as phosphorylation, ubiquitination, SUMOylation, acetylation, and oxidation can dynamically alter its stability, activity, localization, and interaction with other proteins. Defective post-translational regulation of PTEN leads to loss of PTEN activity and this appears to occur more often in tumor vs normal cells. Clinically, PTEN mutations and functional deficiencies are prevalent in many types of human cancers. This newsletter discusses the functional regulation of PTEN by PTMs.

Phosphorylation

Various phosphorylation sites have been identified in at least 3 of PTEN’s domains and are mediated by multiple kinases (Fig. 1). In the C-terminal tail domain, phosphorylation of PTEN plays an important role in regulating PTEN activity. Ser362 and Thr366 are phosphorylated by glycogen synthase kinase 3β. Casein kinase 2 phosphorylates Ser370 and Ser385, while also modifying Ser380, Thr382, and Thr383 to a lesser extent (however, see Al-Khouri et al.). C-terminal tail-phosphorylated PTEN adopts a closed conformational structure, which inhibits its interaction with membrane phospholipids and other membrane-anchored proteins. Lacking the ability to bind to the plasma membrane renders PTEN inactive against its membrane-associated substrate PIP3. Interestingly, closed, phosphorylated PTEN appears to be less susceptible to ubiquitin ligases, and thus the proteasomal degradation of PTEN.

Phosphorylation also occurs in the C2 domain of PTEN (Fig. 1). RAK, a member of the Src tyrosine kinase family, enhances PTEN activity by phosphorylating Tyr336, which prevents...
Continued from Page 1

the interaction of PTEN with the E3 ligase NEDD4-1, thus protecting PTEN from poly-ubiquitination and proteasomal degradation. Also in the C2 domain, RhoA-associated kinase (ROCK), a downstream effector of the Rho GTPase signaling pathway, phosphorylates PTEN on Ser229, Thr232, Thr319, and Thr321. These modifications regulate PTEN’s intracellular localization and PTEN-mediated chemotaxis.

Within the phosphatase domain of PTEN, phosphorylation of Tyr155 enhances E3 ligase WWP2 binding to PTEN and mediates its ubiquitination-dependent degradation. The kinase responsible for this phosphorylation has yet to be described.

Ubiquitination and SUMOylation

While poly-ubiquitination of PTEN causes proteasomal degradation in the cytosol, mono-ubiquitination of PTEN at Lys13 and Lys289 (Fig. 1) promotes its localization to the nucleus where it can exert its tumor suppressor function by antagonizing AKT activity. Lys266 can also be mono-ubiquitinated. PTEN’s lysine residues are also SUMOylated by both SUMO1 and SUMO2. PTEN’s Lys254 and Lys266 are SUMOylated by SUMO1. Lys289 is also SUMOylated. SUMO1 modification enhances PTEN interaction with the membrane and thus the binding to its substrate PI3K. SUMO2/3-modified PTEN localizes to the nucleus where it controls DNA repair.

Acetylation

The phosphatase-active domain of PTEN is modified by acetylation (Fig. 1). Acetylation at Lys125 and Lys128 affects PTEN binding to its substrate PI3K, inhibiting its catalytic phosphatase activity. Another acetylation site is Lys402 within the C-terminal PDZ-binding domain, although its effects on PTEN function and localization are unclear.

Oxidation

Oxidation is another PTM shown to have a regulatory effect on PTEN function. H2O2-mediated oxidation of Cys124 in PTEN’s active site leads to the formation of a disulfide bond between Cys124 and Cys71, resulting in a decrease in PTEN phosphatase activity. Animal studies have shown that mice lacking the peroxidase peroxiredoxin1 (PRDX1) are more susceptible to tumor development due to abnormally high levels of reactive oxygen species, which leads to oxidation-induced inactivation of PTEN and hyperactivation of the AKT pathway. Normally, PRDX1 binds PTEN and prevents its oxidation.

Summary

Studies of PTMs have provided researchers with new insights into protein regulation and are vital for identifying new therapeutic targets for human diseases. At Cytoskeleton Inc., we have developed a line of comprehensive and user-friendly Signal-Seeker™ kits to provide researchers with the necessary tools to study PTMs targeting their proteins of interest. For example, using Cytoskeleton’s Signal-Seeker™ kits, we have identified a novel mono-ubiquitination of PD-L1 in A549 cells following EGF treatment, research recently published in Neoplasia (http://www.neoplasia.com/article/S1476-5586(17)30029-5/pdf). To learn more about Cytoskeleton’s Signal-Seeker™ product line, please visit our website (www.cytoskeleton.com) or contact one of our technical support scientists (tservice@cytoskeleton.com).

References

Signal Seeker™ Kits

<table>
<thead>
<tr>
<th>Kit or Affinity Beads</th>
<th>Type</th>
<th>Reactions</th>
<th>Cat. #</th>
</tr>
</thead>
</table>
| Signal-Seeker™ Phosphotyrosine Enrichment Kit | Kit | 30 | BK160
| | | 10 | BK160-S |
| Signal-Seeker™ Ubiquitin Enrichment Kit | Kit | 30 | BK161
| | | 10 | BK161-S |
| Signal-Seeker™ SUMO 2/3 Enrichment Kit | Kit | 30 | BK162
| | | 10 | BK162-S |

PTM antibodies, beads, etc

<table>
<thead>
<tr>
<th>Kit or Affinity Beads</th>
<th>Type</th>
<th>Reactions</th>
<th>Cat. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphotyrosine Affinity Beads</td>
<td>Beads</td>
<td>40-80</td>
<td>APY03-beads</td>
</tr>
<tr>
<td>SUMO 2/3 Affinity Beads</td>
<td>Beads</td>
<td>20-40</td>
<td>ASM24-beads</td>
</tr>
<tr>
<td>Ubiquitin Affinity Beads</td>
<td>Beads</td>
<td>40</td>
<td>UBA01-beads</td>
</tr>
<tr>
<td>Control for Igpt IgG Beads</td>
<td>Beads</td>
<td>10</td>
<td>CIG01-beads</td>
</tr>
<tr>
<td>Control for Ubiquitin Affinity Beads</td>
<td>Beads</td>
<td>10</td>
<td>CUB02</td>
</tr>
</tbody>
</table>

Learn more about Signal-Seeker™ PTM Detection Kits, Antibodies, and Reagents. www.cytoskeleton.com/signal-seeker