Figure Legend: Metazoan γ-TuRC forms an asymmetric helical structure, MZT1 is associated in the structure.
References
1. Martinez TF, Chu Q, Donaldson C, Tan D, Shokhirev MN, Saghatelian A. Accurate annotation of human protein-coding small open reading frames. Nat Chem Biol. 2020;16(4):458–468. https://doi.org/10.1038/s41589-019-0425-0.
2. Cao X, Khitun A, Na Z, Dumitrescu DG, Kubica M, Olatunji E, Slavoff SA. Comparative proteomic profiling of unannotated microproteins and alternative proteins in human cell lines. J Proteome Res. 2020;19(8):3418–3426. https://doi.org/10.1021/acs.jproteome.0c00254.
3. Unfried JP, Fortes P. SMIM30, a tiny protein with a big role in liver cancer. J Hepatol. 2020;73(5):1010–1012. https://doi.org/10.1016/j.jhep.2020.07.015.
4. Zhang Q, Wu E, Tang Y, Cai T, Zhang L, Wang J, Hao Y, Zhang B, Zhou Y, Guo X, Luo J, Chen R, Yang F. Deeply mining a universe of peptides encoded by long non-coding RNAs. Mol Cell Proteomics. 2021;20:100109. https://doi.org/10.1016/j.mcpro.2021.100109.
5. Lu S, Zhang J, Lian X, Sun L, Meng K, Chen Y, Sun Z, Yin X, Li Y, Zhao J, Wang T, Zhang G, He Q-Y. A hidden human proteome encoded by ‘non-coding’ genes. Nucleic Acids Res. 2019;47(15):8111–8125. https://doi.org/10.1093/nar/gkz646.
6. Li B, Zhang Z, Wan C. Identification of microproteins in Hep3B cells at different cell cycle stages. J Proteome Res. 2022;21(4):1052–1060. https://doi.org/10.1021/acs.jproteome.1c00926.
7. Wieczorek M, Huang T-L, Urnavicius L, Hsia K-C, Kapoor TM. MZT proteins form multi-faceted structural modules in the γ-tubulin ring complex. Cell Rep. 2020;31(13):107791. https://doi.org/10.1016/j.celrep.2020.107791.
8. Tovey CA, Tubman CE, Hamrud E, Zhu Z, Dyas AE, Butterfield AN, Fyfe A, Johnson E, Conduit PT. γ TuRC heterogeneity revealed by analysis of Mozart1. Curr Biol. 2018;28(14):2314–2323. https://doi.org/10.1016/j.cub.2018.05.044.
9. Thawani A, Petry S. Molecular insight into how γ TuRC makes microtubules. J Cell Sci. 2021;134(14):jcs245464. https://doi.org/10.1242/jcs.245464.
10. Cota RR, Teixidó-Travesa N, Ezquerra A, Eibes S, Lacasa C, Roig J, Lüders J. MZT1 regulates microtubule nucleation by linking γTuRC assembly to adapter-mediated targeting and activation. J Cell Sci. 2017;130(2):406–419. https://doi.org/10.1242/jcs.195321.
11. Li M, Li X, Zhang Y, Wu H, Zhou H, Ding X, Zhang X, Jin X, Wang Y, Yin X, Li C, Yang P, Xu H. Micropeptide MIAC inhibits HNSCC progression by interacting with aquaporin 2. J Am Chem Soc. 2020;142(14):6708–6716. https://doi.org/10.1021/jacs.0c00706.
12. Li M, Liu G, Jin X, Guo H, Setrerrahmane S, Xu X, Li T, Lin Y, Xu H. Micropeptide MIAC inhibits the tumor progression by interacting with AQP2 and inhibiting EREG/EGFR signaling in renal cell carcinoma. Mol Cancer. 2022;21(1):181. https://doi.org/10.1186/s12943-022-01654-1.
13. He H, Li J, Xu M, Kan Z, Gao Y, Yuan C. Expression of septin 2 and association with clinicopathological parameters in colorectal cancer. Oncol Lett. 2019;18(3):2376–2383. https://doi.org/10.3892/ol.2019.10528.
14. Ohnishi Y, Yasui H, Kakudo K, Nozaki M. Regulation of cell migration via the EGFR signaling pathway in oral squamous cell carcinoma cells. Oncol Lett. 2017;13(2):930–936. https://doi.org/10.3892/ol.2016.5500.
15. Polycarpou-Schwarz M, Groß M, Mestdagh P, Schott J, Grund SE, Hildenbrand C, Rom J, Aulmann S, Sinn H-P, Vandesompele J, Diederichs S. The cancer-associated microprotein CASIMO1 controls cell proliferation and interacts with squalene epoxidase modulating lipid droplet formation. Oncogene. 2018;37(34):4750–4768. https://doi.org/10.1038/s41388-018-0281-5.
16. Sang Y, Liu J-Y, Wang F-Y, Luo X-Y, Chen Z-Q, Zhuang S-M, Zhu Y. Mitochondrial micropeptide STMP1 promotes G1/S transition by enhancing mitochondrial complex IV activity. Mol Ther. 2022;30(8):2844–2855. https://doi.org/10.1016/j.ymthe.2022.04.012.
17. Xie C, Wang F-Y, Sang Y, Chen B, Huang J-H, He F-J, Li H, Zhu Y, Liu X, Zhuang S-M, Fang J-H. Mitochondrial micropeptide STMP1 enhances mitochondrial fission to promote tumor metastasis. Cancer Res. 2022;82(13):2431–2443. https://doi.org/10.1158/0008-5472.can-21-3910.
18. Qian Y, Zhao M, Han Q, Wang J, Liao L, Yang H, Liu D, Tu P, Liang H, Zeng K. Pharmacologically targeting molecular motor promotes mitochondrial fission for anti-cancer. Acta Pharm Sin B. 2021;11(7):1853–1866. https://doi.org/10.1016/j.apsb.2021.01.011.
19. Chen W, Wang W, Sun X, Xie S, Xu X, Liu M, Yang C, Li M, Zhang W, Liu W, Wang L, Zhou T, Yang Y. NudCL2 regulates cell migration by stabilizing both myosin-9 and LIS1 with Hsp90. Cell Death Dis. 2020;11(7):534. https://doi.org/10.1038/s41419-020-02739-9.
20. Mullin BH, Zhu K, Brown SJ, Mullin S, Tickner J, Pavlos NJ, Dudbridge F, Xu J, Walsh JP, Wilson SG. Genetic regulatory mechanisms in human osteoclasts suggest a role for the STMP1 and DCSTAMP genes in Paget’s disease of bone. Sci Rep. 2019;9(1):1052. https://doi.org/10.1038/s41598-018-37609-0.
21. Miller B, Kim S-J, Kumagai H, Yen K, Cohen P. Mitochondria-derived peptides in aging and healthspan. J. Clin Invest. 2022;132(9):e158449. https://doi.org/10.1172/jci158449.
22. Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, Kita Y, Kawasumi M, Kouyama K, Doyu M, Sobue G, Koide T, Tsuji S, Lang J, Kurokawa K, Nishimoto I. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Aβ. Proc Natl Acad Sci U S A. 2001;98(11):6336–6341. https://doi.org/10.1073/pnas.101133498.
23. Miller B, Kim S-J, Mehta HH, Cao K, Kumagai H, Thumaty N, Leelaprachakul N, Jiao H, Vaughan J, Diedrich J, Saghatelian A, Arpawong TE, Crimmins EM, Ertekin-Taner N, Tubi MA, Hare ET, Braskie MN, Décarie-Spain L, Kanosi SE, Grodstein F, Bennett DA, Zhao L, Toga AW, Wan J, Yen K, Cohen P. Mitochondrial DNA variation in Alzheimer’s disease reveals a unique microprotein called SHMOOSE. Mol Psychiatry. Published online September 21, 2022. https://doi.org/10.1038/s41380-022-01769-3.
24. Lee C, Zeng J, Drew BG, Sallam T, Martin-Montalvo A, Wan J, Kim S-J, Mehta H, Hevener AL, de Cabo R, Cohen P. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 2015;21(3):443–454. https://doi.org/10.1016/j.cmet.2015.02.009.
25. Reynolds JC, Lai RW, Woodhead JST, Joly JH, Mitchell CJ, Cameron-Smith D, Lu R, Cohen P, Graham NA, Benayoun BA, Merry TL, Lee C. MOTS-c is an exercise-induced mitochondrial-encoded regulator of age-dependent physical decline and muscle homeostasis. Nat Commun. 2021;12(1):470. https://doi.org/10.1038/s41467-020-20790-0.
26. D’Souza RF, Woodhead JST, Hedges CP, Zeng N, Wan J, Kumagai H, Lee C, Cohen P, Cameron-Smith D, Mitchell CJ, Merry TL. Increased expression of the mitochondrial derived peptide, MOTS-c, in skeletal muscle of healthy aging men is associated with myofiber composition. Aging (Albany NY). 2020;12(6):5244–5258. https://doi.org/10.18632/aging.102944.
27. Zempo H, Kim S-J, Fuku N, Nishida Y, Higaki Y, Wan J, Yen K, Miller B, Vicinanza R, Miyamoto-Mikami E, Kumagai H, Naito H, Xiao J, Mehta HH, Lee C, Hara M, Patel YM, Setiawan VW, Moore TM, Hevener AL, Sutoh Y, Shimizu A, Kojima K, Kinoshita K, Arai Y, Hirose N, Maeda S, Tanaka K, Cohen P. A pro-diabetogenic mtDNA polymorphism in the mitochondrial-derived peptide, MOTS-c. Aging (Albany NY). 2021;13(2):1692–1717. https://doi.org/10.18632/aging.202529.
28. Kong BS, Min SH, Lee C, Cho YM. Mitochondrial-encoded MOTS-c prevents pancreatic islet destruction in autoimmune diabetes. Cell Rep. 2021;36(4):109447. https://doi.org/10.1016/j.celrep.2021.109447.
29. Cai T, Zhang Q, Wu B, Wang J, Li N, Zhang T, Wang Z, Luo J, Guo X, Ding X, Xie Z, Niu L, Ning W, Fan Z, Chen X, Guo X, Chen R, Zhang H, Yang F. LncRNA-encoded microproteins: A new form of cargo in cell culture-derived and circulating extracellular vesicles. J Extracell Vesicles. 2021;10(9):e12123. https://doi.org/10.1002/jev2.12123.