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Introduction

Small GTPases, also known as small G-proteins, are a large 
family of regulatory factors with roles in virtually all cellular 
processes. They essentially act as molecular switches, adopting 
either GDP-bound inactive (“off”) or GTP-bound active (“on”) 
states, through structural changes induced by the presence 
or absence of the γ-phosphate group of GTP.1 In humans, the 
small GTPase family contains approximately 150 members, and 
is further classified into five subfamilies—Ras, Rho, Arf, Rab, 
and Ran—based on their sequence and structure.2

The activity of these proteins is tightly regulated by a series 
of intricate mechanisms3 (Figure 1). Switching from the 
“off” to the “on” state is mediated by guanine nucleotide 
exchange factors (GEFs), which promote release of GDP and 
its replacement with GTP. Conversely, GTPase-activating 
proteins (GAPs) stimulate the normally slow intrinsic GTPase 
activity to enable rapid return to the “off” state. In this state, 
small GTPases are sometimes bound to guanine dissociation 
inhibitors (GDIs) to block interaction with GEFs and prevent 
activation. This elaborate control system is further enhanced 
by various protein–protein interactions and posttranslational 
modifications (PTMs),4 resulting in a highly complex regulatory 
network whose functioning has been the subject of intense 
research over the past few decades.

Given its importance, it is unsurprising to find that many 
pathogenic bacteria co-opt small GTPase signaling to invade 
and colonize host tissues. Here, we will illustrate just a few of 
the diverse strategies these pathogens use to subvert host 
cellular processes to their own advantage. 

Activating Rho GTPases for Host Cell Invasion

The membrane-anchored Rho-family GTPases—including Rac1, 
Cdc42, and RhoA—are key regulators of actin cytoskeleton 
organization. These factors moderate the function of WASP 
and WAVE proteins to direct recruitment and activation of 
the actin-polymerizing Arp2/3 complex.5 Normally, WASP 
adopts an autoinhibitory fold where the Arp2/3-activating 
VCA motif is shielded by the G-protein binding domain (GBD). 
Association of the latter with Cdc42–GTP releases the VCA to 
engage Arp2/3,6 and Rac1–GTP similarly activates N-WASP and 
WAVE.7,8 Many pathogenic bacteria subvert Rho-family GTPase 
function to effect cytoskeletal remodeling and enable invasion 
of host cells. For example, Campylobacter jejuni (a major cause 
of food poisoning) hijacks an integrin-mediated signaling 
cascade upstream of Rac1 by binding fibronectin through 
two outer membrane proteins, CadF and FlpA.9 This induces 
downstream recruitment of host GEFs (DOCK1 and TIAM1) 
that activate Rac1, promoting membrane ruffling and bacterial 
entry. Consistent with this, knockdown of Rac1 or its GEFs 

largely attenuated C. jejuni invasion of human epithelial cells.

Rather than exploiting membrane receptors, some bacteria 
inject effector proteins directly into the host cell cytoplasm using 
a syringe-like type III secretion system (T3SS). This mechanism 
is exemplified by Salmonella species (gastroenteritis and 
typhoid fever), which have been extensively studied as model 
pathogens, and secrete a number of effectors that interfere 
with small GTPase function to permit bacterial internalization 
and intracellular survival.5 The Salmonella secretome includes 
SopE, a eukaryotic GEF mimic that targets Cdc42 and Rac110 
to drive actin polymerization and membrane remodeling, 
promoting host cell invasion.

Subsequent work revealed that WAVE activation also requires 
Arf-family small GTPases, as well as Rac1. Through the action 
of a second effector, SopB, Salmonella recruits the host GEF 
cytohesin-2 (ARNO) to activate Arf1 and complement the 
function of SopE.11,12 In addition, SopE is also now known to 
activate the small GTPase RalA, to recruit the exocyst complex 
to invasion sites and further drive membrane expansion.13 
Remarkably, the bacterium secretes yet another protein 
after entry, SptP, with GAP activity for Cdc42 and Rac1, to 
downregulate the membrane remodeling process and restore 
normal cytoskeletal morphology.14,15

Making Themselves at Home: Bacterial Hijacking of Rab 
and Arf GTPases

Once internalized, pathogenic Salmonella continue to survive 
and proliferate within an intracellular inclusion known as the 
Salmonella-containing vacuole (SCV), shielding the growing 
bacteria from host defenses. To establish and maintain this 
niche, they secrete additional T3SS effectors to intercept 
the function of Rab-family small GTPases, which are well-
established regulators of intracellular trafficking.4 Initially, the 
bacterial effector SopB recruits Rab5a to confer the SCV with 

Figure 1. Schematic of small g-protein nucleotide exchange that is regulated by 
GEF and GAP proteins
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early endosomal characteristics, including EEA1 loading.16 Since Rab5a mediates 
early endosomal fusion and conversion to late endosomes, the maturing SCV 
then acquires late endosomal markers including Rab7 and Rab9, although further 
T3SS effectors modify its characteristics to permit bacterial survival. For example, 
SifA captures additional Rab7 by binding to its effector protein, PLEKHM1, to 
divert phagolysosomal membranes for fusion with the SCV, thereby expanding 
the vacuole.17 Meanwhile, SopD2 blocks Rab7-mediated recruitment of RILP and 
FYCO1 to prevent trafficking of the SCV to lysosomes,16 and SifA also engages 
PLEKHM2 to block its interaction with Rab9. This stops delivery of mannose-
6-phosphate receptors (M6PRs) to the SCV membrane, preventing import of 
lysosomal enzymes and protecting the resident bacteria from hydrolytic attack.18

Similarly, Chlamydia trachomatis proliferates intracellularly by manipulating 
multiple pathways through more than 70 T3SS-delivered proteins.19 After using 
IPAM/CT223 to subvert host microtubule organization and position its nascent 
vacuole next to the Golgi apparatus, Chlamydia secretes InaC/CT813 to recruit 
the Arf1 and Arf4 GTPases to the inclusion membrane. This induces stabilizing 
microtubule PTMs,20 seemingly “anchoring” the vacuole in place. Like other 
obligate intracellular bacteria, C. trachomatis has a small genome and lacks many 
metabolic genes, making it reliant on nutrients from the host cell. Thus, fusion 
of Golgi-derived vesicles, captured by the remodeled microtubule network, 
allows the bacteria to obtain essential lipids.21 Another chlamydial effector, 
CT229/CpoS, sequesters further nutrients through its ability to bind several Rab 
GTPases. For example, interactions with Rab4 and Rab35 enable it to intercept 
transferrin-containing recycling vesicles to obtain iron, an essential nutrient for 
productive chlamydial infection.22

Diverting Autophagy: To Exploit or Evade?

Multiple Rab GTPases are also involved in regulating autophagy,23 and different 
bacteria manipulate them in different ways. The intracellular pathogens Coxiella 
burnetii (Q fever) and Ehrlichia chaffeensis (human monocytic ehrlichiosis) 
are both thought to capture autophagosomes as a source of nutrients and 
membrane materials to support bacterial proliferation and vacuole expansion. C. 
burnetii achieves this by T4SS-mediated delivery of CvpF, an effector that recruits 
Rab26 to the inclusion.24 This is a recently characterized small GTPase that has 
been shown to promote autophagosome formation in several studies.25-27 In 
the case of E. chaffeensis, the secreted factor Etf-1 binds to both Rab5a and 
its effector PIK3C3. This stimulates generation of an autophagosome that 
subsequently associates with the bacterial inclusion, ostensibly delivering 
cytoplasmic nutrients to the replicative vacuole.28

Autophagy is also an important host defense mechanism against invading 
intracellular bacteria, but it can be subverted by certain pathogens. For example, 
Listeria monocytogenes (listeriosis) secretes an enzyme that ADP-ribosylates 
Rab5a, blocking GEF function and preventing its activation. This inhibits Rab5a-
mediated fusion of phagosomes with lysosomes, enabling the bacteria to evade 
killing.29 Similarly, Shigella flexneri (diarrhea) disarms autophagy via the T3SS 
effector VirA, which functions as a GAP for Rab1 to maintain it in the “off” state 
and prevent autophagosome formation.30

Recent Developments & Future Prospects

Given the range of functional virulence factors released by bacterial secretion 
systems, targeting of these effectors—or of the T3SS itself—has been suggested 
as a novel therapeutic strategy.31 This might offer a potential solution to growing 
antibiotic resistance, as well as other adverse effects of the existing agents,32 
and several new drug candidates are in preclinical development. Other work 
has identified a small GTPase-like domain in the Smc protein of Mycoplasma 
pulmonis, which structurally and functionally resembles SopE-like GEFs, and 
was found to activate Rac1 to promote cellular migration and proliferation.33 
Long-term mycoplasma infections are currently difficult to resolve, but are 
associated with elevated risk of multiple cancer types,34 so the possibility that 
these pathogens employ bacterial-like virulence factors may offer a promising 
new avenue for future cancer treatment and prevention.
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