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During initial efforts to annotate genomes, many potential coding 
sequences were identified that were assumed to be too short to 
encode functional proteins. To reduce the number of annotations 
and reduce the risk of false positives, an arbitrary cutoff was 
therefore applied, and sequences shorter than 100 amino acids 
(aa) were filtered out.1 Later, it was discovered that many of these 
small open reading frames (smORFs) are translated to produce 
microproteins, or micropeptides, whose expression is apparently 
just as tightly controlled as for canonical proteins.1,2

Many microproteins are encoded in 5'-untranslated regions 
(5'-UTRs), long non-coding RNAs (lncRNAs), and circular RNAs 
(circRNAs), and a significant number of them are translated from 
non-AUG start codons.3,4 These features traditionally made them 
difficult to identify, but the use of modern genomics technologies, 
such as ribosome profiling (Ribo-Seq) and sensitive proteomics 
workflows, has now firmly established that many smORFs are 
translated to produce detectable microproteins. Multiple studies 
have identified hundreds of microproteins in various cell types and 
tissues,4–6 often including previously unannotated examples, but 
the function of most of them remains unknown. Nevertheless, the 
emerging evidence indicates key roles for microproteins in many 
cellular and physiological processes, and in this newsletter, we will 
review some of the most important findings so far. 

Microprotein Regulation of the Cytoskeleton

The 82-aa microprotein Mozart 1 (MZT1) plays a central role in 
cytoskeletal organization as part of the γ-tubulin ring complex 
(γTuRC), an essential multiprotein assembly that acts as a master 
template for nucleation of new microtubules.7 Binding of MZT1 to γ 
tubulin complex proteins (GCPs) controls recruitment of the γTuRC 
to microtubule-organizing centers (MTOCs) to spatially orchestrate 
microtubule nucleation.8(Figure 1) Specifically, MZT1 binds to the 
N-terminal regions of GCPs—primarily GCP3 and GCP6—to form 
much of the luminal bridge of the γTuRC9 and mediate its docking 
with MTOCs, via NEDD1.10 Although MZT1 is not essential for either 
γTuRC assembly or microtubule nucleation, its absence strongly 
inhibits interaction of the γTuRC with NEDD1 and produces severe 
mitotic defects, identifying it as an essential targeting factor in 
microtubule organization.10

A number of microproteins have also been implicated in direct or 
indirect interactions with the actin cytoskeleton, and interestingly, 
these were mostly discovered due to their effects on cancer cells. 
The 51-aa “micropeptide inhibiting actin cytoskeleton” (MIAC) acts 
by regulating septin-211 and by suppressing EGFR signaling,12 both 
of which are known to influence actin remodeling.13,14 It appears to 
function as a tumor suppressor, since lower MIAC expression was 
correlated with poorer survival in cancer patients.11,12

Similarly, the 83 aa microprotein CASIMO1 (now annotated as 
SMIM22) was discovered in a breast cancer expression profiling 

screen, where it was particularly strongly overexpressed in ER+ 
tumors.15 High expression was also identified in colon, ovarian, 
and lung cancer cell lines, and conversely to MIAC, knockdown 
of SMIM22 in MCF 7 breast cancer cells led to actin cytoskeleton 
dysregulation, impaired motility, and slower proliferation.

Short transmembrane mitochondrial protein 1 (STMP1) is also 
upregulated in multiple cancer types,16 and high expression has 
been associated with poor prognosis. This 47-aa microprotein is a 
nuclear-encoded factor that localizes to the inner mitochondrial 
membrane, where it apparently interacts with complex IV of 
the electron transport chain. However, STMP1 also binds to 
myosin heavy chain 9 (MYH9) to promote mitochondrial fission 
and cell migration.17 Mitochondrial fission specifically requires 
direct interaction of MYH9 with actin,18 and the same protein 
has been implicated in cell migration through regulation of actin 
cytoskeleton organization.19 Together, these actions may explain 
the pro-tumorigenic effects of STMP1,16 and consistent with this, 
STMP1 silencing prevented tumor metastasis in mouse xenografts.17 
Perhaps relatedly, an SNP that causes increased expression of 
STMP1 is associated with elevated risk of Paget’s disease,20 a 
condition involving dysregulated bone remodeling.

Mitochondria Also Produce Microproteins

Mitochondrial DNA (mtDNA) harbors hundreds of potential 
microprotein-encoding smORFs, although only a handful of these 
have been confirmed to date.21 The first example was humanin, a 
24-aa microprotein expressed from the 16S rRNA gene (MT-RNR2) in 

Figure Legend: Metazoan γ-TuRC forms an asymmetric 
helical structure, MZT1 is associated in the structure. 
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mtDNA.22 It was initially identified in a cytoprotection assay using a cDNA library from 
the brain of an Alzheimer’s disease patient, but has since been described as a protective 
factor in multiple cell types.21

Relatedly, the SHMOOSE microprotein was recently discovered by mapping an 
Alzheimer’s disease-associated SNP to a previously uncharacterized smORF overlapping 
the MT-ND5 gene in mtDNA.23 This small 58-aa protein stays localized in mitochondria, 
where it modulates gene expression and increases mitochondrial oxygen consumption. 
The pathogenic variant was found to increase Alzheimer’s disease risk by up to 50%, 
and introduces an amino acid substitution (D47N) that abolishes the cytoprotective 
effect of the wild type protein against amyloid-β-induced toxicity.

Also encoded in mtDNA, the MOTS-c microprotein is a small, 16-aa peptide that 
regulates insulin sensitivity and is primarily expressed in skeletal muscle.24 It is 
strongly induced by exercise,25 hinting that it may contribute to the metabolic benefits 
associated with regular physical activity. Transcription of MOTS-c appears to be 
regulated independently of the 12S rRNA gene (MT-RNR1) where its smORF is found, 
and its levels in muscle and plasma also vary differentially with age.26 An SNP that 
causes a missense mutation (K14Q) in MOTS-c produces a hypomorphic form of the 
protein associated with reduced insulin sensitivity and a higher risk of type 2 diabetes, 
but interestingly, only in men.27 It is also downregulated in type 1 diabetes, where it has 
been proposed as a therapeutic target due to its influence on T cell metabolism and its 
protective effects in a mouse model of the disease.28

Conclusions & Outlook

Research on microproteins is still a relatively young field. Even though the evidence 
suggests that hundreds to thousands of them are actively expressed, they remain 
a comparatively understudied protein class, and only a few of them have been 
investigated in detail. However, what we do know tells us that microproteins are just as 
important as canonical proteins in terms of their biological functions and significance, 
meaning that we can expect this area to remain an exciting topic for some time. 
In an important recent development, microproteins were identified as a cargo in 
extracellular vesicles (EVs),29 suggesting that they might also mediate cell-to-cell and 
systemic communication in addition to their intracellular functions. Importantly, the 
microprotein profile of EVs differed between glioma patients and healthy controls, 
suggesting that certain microproteins could be useful in the future as disease 
biomarkers or novel therapeutic targets.
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