SiR700-Tubulin Kit

SiR700-Tubulin Kit
$0.00
SKU
CY-SC014

SiR700-tubulin is based on the far-red silicon rhodamine (SiR) fluorophore analogue SiR700 and the microtubule-binding drug Docetaxel. SiR700-tubulin allows labeling of endogenous microtubules in live cells with high specificity and low background without the need for genetic manipulation or over-expression. The key features of SiR700-tubulin are i) far-red absorption and emission wavelengths, ii) cell permeability, iii) fluorogenic character, and iv) compatibility with super-resolution microscopy (e.g., STED & SIM). In addition, SiR700-tubulin can be used for wide-field and confocal fluorescent imaging in living cells. The emission in the far-red wavelength minimizes phototoxicity and sample autofluorescence. SiR700-tubulin is compatible with GFP and/or m-cherry fluorescent proteins. It can be imaged with standard Cy5 filter sets. Probe quantity allows 35 – 140 staining experiments.*

 

Optical properties

λabs   689 nm

λEm   716 nm

εmax 1.0·105 mol-1·cm-1 

MW   1327.6 g/mol

MF    C75H86N4O16Si

 

 

*Based on the following conditions: 0.5 – 1 ml staining solution / staining experiment with 0.5 – 1 µM probe concentration. The number of staining experiments can be further increased by reducing volume or probe concentration

Cytoskeleton, Inc. is the exclusive provider of Spirochrome, Ltd. products in North America.

Fibro_1h_1700_nM_SiR700_C8_tubulin_Hoechst_washed-RESIZED

 Fibroblast cells stained with SiR700-tubulin (red) (Cat. # CY-SC014) and Hoescht (blue).

For product Datasheets and MSDSs please click on the PDF links below.

Spirochrome Technical Tips and Ex/Em spectra in graphical form (PDF)

AuthorTitleJournalYearArticle Link
Chang, Chih Chia et al.Regulatable assembly of synthetic microtubule architectures using engineered microtubule-associated protein-IDR condensatesJournal of Biological Chemistry2024
Tsuchiya, Kenta et al.Ran-GTP Is Non-essential to Activate NuMA for Mitotic Spindle-Pole Focusing but Dynamically Polarizes HURP Near ChromosomesCurrent Biology2021